a2 United States Patent

US009083727B1

(10) Patent No.: US 9,083,727 B1

(54)

(735)

(73)

")

@
(22)

(1)

(52)

(58)

(56)

Stamos

SECURING CLIENT CONNECTIONS

Inventor: Alexander Charles Stamos, San Carlos,
CA (US)

Assignee: Artemis Internet Inc., San Francisco,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 552 days.

Appl. No.: 13/444,225

Filed: Apr. 11, 2012

Int. CI.

GO6F 21/00 (2013.01)

HO4L 29/06 (2006.01)

HO4L 9/32 (2006.01)

U.S. CL

CPC ..o, HO4L 63/126 (2013.01); HO4L 9/32

(2013.01)
Field of Classification Search
CPC GO6F 21/31; HO4L 9/32; HO4L 63/12;

7,451,488
7,467,203
7,499,865
7,792,994
7,849,502
7,849,507
7,984,163
8,261,351
8,347,100
8,484,694

2001/0052007

HO04L 63/126; HO4L 63/0823
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

B2 11/2008 Cooper et al.
B2 12/2008 Kanget al.

B2 3/2009 Aggarwal et al.
B1 9/2010 Hernacki

Bl 12/2010 Bloch et al.

Bl 12/2010 Bloch et al.

B2 7/2011 Almog

B1 9/2012 Thornwell et al.

B1* 1/2013 Thornewell etal. 713/176

B2 7/2013 Diebler et al.
Al 12/2001 Shigezumi

DNS

\\
S 106 ,'| Resolver
I'd

Mail Client

Client Device

|

|

L @
I

1 Browser

] ~
1

1

1

1

1

14

QOperating System

(45) Date of Patent: Jul. 14, 2015
2004/0006706 Al 1/2004 Erlingsson
2004/0030784 Al* 2/2004 Abdulhayoglu 709/227
2004/0098485 Al* 5/2004 Larsonetal. .. 709/227

2004/0158720 Al* 82004 O’Brien 713/176
2004/0193703 Al 9/2004 Loewy etal.
2005/0015626 Al 1/2005 Chasin

2005/0273841 Al* 12/2005 Freund ... 726/1
2006/0021031 Al* 1/2006 Leahyetal. 726/22
2006/0021050 Al 1/2006 Cook et al.

2006/0041938 Al* 2/2006 Al ..o 726/14

2006/0047798 Al 3/2006 Feinleib et al.

2006/0167871 Al 7/2006 Sorenson et al.

2006/0230380 Al 10/2006 Holmes et al.

2007/0204040 Al 8/2007 Cox

2007/0214283 Al 9/2007 Metke et al.

2007/0214503 Al 9/2007 Shulman et al.

2008/0059628 Al* 3/2008 Parkinson 709/224
2008/0140441 Al* 6/2008 Warnerccocevvevenenn. 705/1
2008/0147837 Al 6/2008 Klein et al.

2008/0222694 Al 9/2008 Nakae

2009/0037976 Al 2/2009 Teo et al.

2009/0055929 Al 2/2009 Leeetal.

2009/0164582 Al 6/2009 Dasgupta et al.

2010/0049985 Al 2/2010 Levow et al.

2010/0094981 Al 4/2010 Cordray et al.

2010/0100957 Al 4/2010 Graham et al.

2010/0125895 Al* 5/2010 Shulletal.ccoevrvvrnrennn. 726/4
2010/0131646 Al 5/2010 Drako

2010/0191847 Al 7/2010 Raleigh

2011/0010426 Al 1/2011 Lalonde et al.

2011/0167474 Al 7/2011 Sinha et al.

2011/0182291 Al 7/2011 Lietal.

(Continued)

Primary Examiner — William Goodchild
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

An input including a second level domain is received. The
second level domain is associated with a particular top level
domain. A policy associated with the top level domain is
obtained. A determination is made as to whether connection
information is consistent with the policy. Content is displayed
based on the determination.

20 Claims, 10 Drawing Sheets

root)_ 12

nameserver

124
secure.)_
nameserver

~ nameserver

126
N acmebank.secure.)—

~ 128
o 5

N www.acmebank.secure

US 9,083,727 B1
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2011/0247073 Al
2011/0258237 Al
2011/0276804 Al*
2011/0314152 Al

10/2011
10/2011
11/2011
12/2011

Surasathian

Thomas

Anzai etal.cccen 713/176
Loder

2012/0131164 Al 5/2012
2012/0203904 Al 82012
2012/0303808 Al 11/2012
2013/0007540 Al 1/2013
2013/0097699 Al* 42013
2013/0239209 Al 9/2013
2013/0276053 Al 10/2013

* cited by examiner

Bryan et al.

Niemela et al.

Xie

Angelsmark et al.

Balupari etal. 726/22
Young et al.

Hugard et al.

US 9,083,727 B1

Sheet 1 of 10

Jul. 14, 2015

U.S. Patent

I "OId
alnoas-yuegawoe mmm K
N
g N
8¢l N < 9dIA8(Q WSO
~ r——— - —""—-—————- -
~ ~ _ weisAg Bunelsadp
> ~ I ¥l _\If 1 wesuoen
Janisssweu Mo _ s
R "9Jndes yuegaswoe M AN I jonjosay |7 R
ok N ~ ! sna [N 90k
// JaNj0SaY “N Ll AN
. SNG Josmoug
senessweuy | 3 Vowr L [@ R
"8inoes |
S| L @ _ y01
, e | (aoe0)
\\ 31 _||||||||m_\W |||||| |
Janseseweu
/ ons 80 T\

44 T\ o

U.S. Patent

Database

Jul. 14, 2015 Sheet 2 of 10 US 9,083,727 B1
)—1 04
Browser)_202
GUI
208 204
HT-TLD)_ L _TLS— 4+ —
: ; Network
Policy Engine o™ — —0S— + —
Subsystem | _ pesolver4 —
212 \ 210
J . 206
<> Default Rendering)_
Policy Engine

FIG. 2

U.S. Patent Jul. 14, 2015 Sheet 3 of 10 US 9,083,727 B1

)—302
Receive domain as input

l

- 304
Determine that domain is associated with)_
particular top level domain

l

)—306
Obtain policy

: Y 308
Determine whether connection information is)_
consistent with policy

l

)—31 0
Display content based on determination

300—" FIG. 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 10 US 9,083,727 B1

BROWSER

IACME Bank Inc.| https://www.acmebank.secure/welcome.html
AN

Chos ——
406 408 410

Welcome to Acme Bank!

FIG. 4A

BROWSER

‘—452

L
IACME Bank Inc.| https://www.acmebank.secure/welcome.html
N

)—458

I
This website belongs to: | ___|
I ACME Bank Inc.

| Verified by .secure Registgy | Domain Policy for acmebank.secure

I 6 —

I Domain. Policw’- Policy DPF TLDMin Actual

B “I\‘_TLS 1.2 1.1 1.3
— — = === DNSSEC Optional Optional Yes

\—462 \—464 hS

466

FIG. 4B

U.S. Patent Jul. 14, 2015 Sheet 5 of 10 US 9,083,727 B1

BROWSER

https://www.betabank.secure

WARNING! SECURITY ERROR!

When connecting to:
www.betabank.secure
we noticed the following security problems:
50)—
Required Securit Problem)‘516

TLS Version 1.2 TLS Version 1.0
DNSSEC No DNSSEC

51 21)—514
Cancel Report

A d
504

U.S. Patent Jul. 14, 2015 Sheet 6 of 10 US 9,083,727 B1

)—602

Receive .com domain as input

l

f_604
Connect to .com domain using plaintext HTTP

l

Connect to .com domain using HTTPS

l

f_608
Connect to .secure domain using HTTPS

l

Save redirection information

)—606

)—610

600—" FIG. 6

U.S. Patent Jul. 14, 2015 Sheet 7 of 10 US 9,083,727 B1

. 702
Receive URL.

704

)—708

7/ Perform HTTP /
No
request.

Is TLD an
HT-TLD?

Is domain in
STS cache?

Yes

y

716
Change URL to }_
Yes cached HSTS target.

718 710

)—714

Perform . esponse
DPF DNS PH“StngT:('; o Jeves wiredirect and
request. : HSTS?

722 ne
712
| 5

Domain policy No DPF. Resume
No normal behavior.

720

Get a DP
Record?

already in db?

Yes

Yes

724 726
| s

DPF Record
Signed?

Set TLS context using

No—+ default policy.

Yes

¢)—728)—730

Calculate Connect using FIG. 7
resultant policy. DPF Policy.

US 9,083,727 B1

Sheet 8 of 10

Jul. 14, 2015

U.S. Patent

8 'OId

@O@R

aseqgele(q
Aaljod Ao1104

\ Hnejsg
ol /

1X1
aingss'e

Ll

»| ouibu3g Aoljod

w

ainoes Aoljod yuegswoe :Jsenbay SNQA

E‘wl\
ove |

_. m wo

H sulbug Buissedold wedg

uoieo!|ddy lBwgapA

c08

Woo' lewigam djws
9JND8S") UBGSWOR XL

wvmlw

¢om|“

U.S. Patent Jul. 14, 2015 Sheet 9 of 10 US 9,083,727 B1

902
)_

Receive email

l

904
Determine that domain is associated with)F
particular top level domain

l

)«—906
Obtain policy

l

908
Determine whether message delivery is)F
consistent with policy

l

910
Selectively deliver message based on)F
determination

900 —" FIG.9

U.S. Patent

US 9,083,727 B1

1002
)_

1006
)_

Deliver

Jul. 14, 2015 Sheet 10 of 10
Receive email
1004
No—»
Yes

l)—1 008

Request policy.secure

1012
N

Set Policy

, Policy Engine
Using Default

1014
J

h 4

Start spam process

1016
)_

1018

Yes No

! |

102
Deliver, plus lock

symbol Reject

1022
)_

FIG. 10

US 9,083,727 B1

1
SECURING CLIENT CONNECTIONS

BACKGROUND OF THE INVENTION

Individuals are increasingly using the Internet to conduct
financial and other sensitive transactions. For example, an
individual might visit a bank website to check balance infor-
mation or transfer money between accounts. Unfortunately, a
variety of techniques are available to criminals and others
with nefarious motives who wish to eavesdrop on or other-
wise compromise the security that the individuals believe
protect their transactions. As one example, unsuspecting
users can be tricked into visiting a compromised or otherwise
illegitimate copy of a legitimate website. As another example,
the communications between the user and the legitimate web-
site can be intercepted. Such communications can be inter-
cepted even when protections such as TLS are employed,
through the use of man-in-the-middle and other attacks.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 illustrates an example of an environment in which
client devices securely connect to network resources.

FIG. 2 illustrates various logical components of an
embodiment of a browser application.

FIG. 3 illustrates an embodiment of a process for determin-
ing whether connection information is consistent with a
policy.

FIG. 4A illustrates an embodiment of content as rendered
in a browser.

FIG. 4B illustrates an embodiment of content as rendered
in a browser.

FIG. 5 illustrates an embodiment of content as rendered in
a browser.

FIG. 6 illustrates an embodiment of a process for top level
domain redirection.

FIG. 7 illustrates an embodiment of a process for determin-
ing whether connection information is consistent with a
policy.

FIG. 8 illustrates an example of an environment in which
domain policies are used in email delivery.

FIG. 9 illustrates an embodiment of a process for determin-
ing whether delivery of an email is consistent with a policy.

FIG. 10 illustrates an embodiment of a process for deter-
mining whether delivery of an email is consistent with a
policy.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the

10

15

20

25

30

35

40

45

50

55

60

2

term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1 illustrates an example of an environment in which
client devices securely connect to network resources. As
shown, client device 102 is a personal computer comprising
typical commodity hardware (e.g., having a multi-core pro-
cessor, RAM, storage, and one or more network interfaces)
and running an operating system 108. Installed on client
device 102 are applications such as a web browser application
104 and a mail client application 106. Other client devices can
also be used in conjunction with the techniques described
herein, such as mobile phones, tablets, game consoles, set-top
boxes, etc.

Suppose a user of client device 102 (hereinafter “Alice™)
has a set of bank accounts with a financial institution known
as “ACME Bank, Inc.” ACME Bank has a website 128 acces-
sible via the URI: www.acmebank.secure. The top level
domain (TLD) of the site is “.secure.” As will be described in
more detail below, ACME Bank can also employ domains
with other top level labels, such as “www.acmebank.com,”
“www.acmebank.safe,” and/or “www.acmebank.bank™ and
can also redirect users to www.acmebank.secure from those
domains if desired.

FIG. 2 illustrates various logical components of an
embodiment of a browser application. When Alice wishes to
connect to ACME Bank’s website to check the balance in one
of'her accounts, she loads browser application 104 and types
“www.acmebank.secure” into the browser’s address bar.

In some embodiments browser 104 has a Domain Name
System (DNS) cache 110. If the resolution of www.acme-
bank.secure to an IP address is not present in cache 110,
browser 104 connects with DNS resolver 114 provided by
operating system 108 (e.g., via network subsystem 204).
DNS resolver 114 has its own cache 112. If the resolution is
not present in cache 112, DNS resolver 114 contacts the DNS
resolver 120 of client 102°s ISP 116. DNS resolver 120 has its
own cache 118 and also a hints file usable to identify root
nameservers such as root nameserver 122. If the resolution is
not present in cache 118, DNS resolver 120 will iteratively
query nameservers 122-126 until it ultimately receives an
answer that includes an IP address for site 128. In various
embodiments, each of the responses provided by each of the
nameservers (Whether a referral to another nameserver or the
IP address) is DNSSEC signed. As shown, nameserver 124 is
authoritative for the *“.secure” TLD, and nameserver 126 is
authoritative for the second level domain “acmebank.secure.”
In various embodiments, caches 118, 112, and 110 are con-
figured to cache the results of the DNS queries.

Included in browser 104 is a policy engine 208 that deter-
mines whether the TLD (e.g., “.secure”) of the site to which

US 9,083,727 B1

3

Alice is attempting access is included in a list of particular
TLDs (also referred to herein as the list of “higher trust”
TLDs). As will be described in more detail below, if a given
TLD is included in the list, policy engine 208 determines an
appropriate policy to be applied and enforces the policy.

In some embodiments, each of components 202-208 is
included in the browser application by the browser vendor. In
other embodiments, elements such as policy engine 208 are
provided by one or more third parties (e.g., as a plugin or
extension). Whenever browser 104 is described as perform-
ing a task, either a single component or a subset of compo-
nents or all components of browser 104 may cooperate to
perform the task. Similarly, whenever a component of
browser 104 is described as performing a task, a subcompo-
nent may perform the task and/or the component may per-
form the task in conjunction with other components.

FIG. 3 illustrates an embodiment of a process for determin-
ing whether connection information is consistent with a
policy. In some embodiments process 300 is performed by
browser 104. A more detailed process for determining
whether connection is consistent with a policy is presented in
FIG. 7 and described in more detail below.

Process 300 begins at 302 when a domain is received as
input. As one example, the domain “www.acmebank.secure”
is received as input at 302 when Alice types the address into
the address bar in her browser. As another example, a domain
is received as input as a result of a redirect (described in more
detail below). As yet another example, a domain is received as
input when Alice clicks on a hyperlink rendered in graphical
user interface (GUI) 202 by rendering engine 206.

At 304, a determination is made that the domain is associ-
ated with a particular TLD. As one example, a determination
is made that “www.acmebank.secure” is associated with the
TLD, “.secure,” which appears in the list of higher trust TLDs
stored by browser 104.

At 306, a policy is obtained. As one example, the policy is
obtained from a nameserver, such as nameserver 124 or
nameserver 126, as a DNS request described in more detail
below. As another example, one or more default policies 210
(also referred to herein as “base policies”) are stored by
browser 104 and an appropriate default policy is selected at
306. In some embodiments, browser 104 includes a policy
database 212 (e.g., of cached policies previously obtained at
306 during other iterations of process 300). If an applicable
policy is present in database 212, such a policy can be
obtained at 306 as appropriate. As will be described in more
detail below, the policy obtained at 306 can also be computed,
such as by combining a policy received from nameserver 124
with default policy 210 to form a resultant policy. Also as will
be explained in more detail below, different TLDs appearing
in the browser’s higher trust TLD list can have policies of
varying stringency associated with them, respectively.

At 308, a determination is made as to whether connection
information is consistent with the policy obtained at 306. As
one example, the policy obtained at 306 can require that
responses to DNS queries for domains under the “.secure”
TLD be signed using DNSSEC. When Alice’s browser 104
attempts to connect to www.acmebank.secure, policy engine
208 can determine whether the DNS resolution process
makes use of the appropriate signatures. Requirements for
other aspects of the connection can also be specified in the
policy, as explained in more detail below in the section titled
“Domain Policy Language.”

At 310, content is displayed based on the determination
performed at 308. Various examples of such content being
displayed are depicted in FIGS. 4A, 4B, and 5.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4A depicts the main page of ACME Bank’s website,
as rendered by browser 104 in some embodiments. In the
example shown, the address bar 402 displays information that
allows Alice to see that she has securely connected with
ACME Bank (i.e., information about her connection with
website 128 is consistent with that required by a policy). As
one example, the name of the legal entity that registered the
domain (“ACME Bank Inc.”) is displayed in region 404, in
green, and outlined in a box. As another example, also indi-
cated in green is the fact that HTTPS is being used (406). As
yet another example, the TLD “.secure” is rendered in bold
(408)—different from the rest of the URI. As yet another
example, the specific page is greyed out (410).

FIG. 4B depicts the interface shown in FIG. 4A as it is
being interacted with by a user. In the example shown, Alice
has hovered her mouse over region 452, resulting in overlay
454 being rendered in the browser window. Other interactions
can also cause the content shown in region 454 to be dis-
played, such as by Alice clicking on region 452 or selecting an
appropriate menu option (not shown) such as “tell me more
about this site.” Box 454 provides additional information
about the registration of the site. If Alice hovers her mouse
over region 456 (or clicks on it, as applicable), overlay 458
will be rendered in her browser. Box 458 shows that policies
with respect to two aspects of a connection to website 128
have been specified—policies with respect to the version of
TLS and policies with respect to whether or not DNSSEC is
used. Column 464 lists the minimum requirements for any
site in the .secure TLD (in some embodiments). Specifically,
TLS version 1.1 or higher must be used, and use of DNSSEC
is optional. Column 462 lists the minimum requirements for
the acmebank.secure secondary level domain and any subdo-
mains. The acmebank requirement for TLS is more stringent
(1.2 or higher) but the DNSSEC requirement is the same as
the minimum for all sites under the .secure TLD. Finally,
column 466 shows the actual connection information with
respect to the page Alice rendered: TLS 1.3 was used, as was
DNSSEC. Alice’s connection with site 128 was consistent
with the requirements of both the TLD minimum (464) and
the acmebank.secure minimum (462), and thus a resultant
policy combining the two.

FIG. 5 depicts an embodiment of a website as rendered by
browser 104 in some embodiments. In the example shown,
the website of another bank, “Beta Bank,” is either miscon-
figured or has been compromised. For the example depicted
in FIG. 5, suppose the default policy for the .secure TLD
requires TLS version 1.2 or higher and requires DNSSEC.
Neither of these aspects is true with respect to the “Beta
Bank” site. Instead, the site supports only TLS version 1.0 and
DNSSEC is not used to resolve its IP address. In contrast to
what is depicted in address bar 402, a viewer of interface 500
would see the URI rendered in red in address bar 502, because
the browser is in an error state. Further, security warning 504
is provided (e.g., as a popup or inband) by the browser appli-
cation. Included in the error notification are the policy
requirements (508) and the observed connection information
(510). Further, the user is able to learn more about the prob-
lem by clicking on that problem (e.g., by clicking item 516).
The user is also presented with the option to navigate away
from the page (by selecting cancel button 512) or to submit a
report (e.g., to the registrar of the website) by selecting button
514. As illustrated in interface 500, the user is not presented
with an “ignore”/“continue anyway” option, and the content
of'the Beta Bank website is not displayed to or accessible to
the user. In some embodiments, the only way to be presented
with an “ignore” option is for the user to run the browser in a

US 9,083,727 B1

5

debug mode, modify a registry key, or take another action
unlikely to be taken by a typical end user.

Domain Policy Language

Overview

Top level (and second level/sub domains, as applicable)
can communicate policies to applications such as applica-
tions 104 and 106 using the Domain Policy Framework
(DPF). In some embodiments the DPF uses the DNS system
to publish policies. As one example, the record itself can be
extended to support the inclusion of additional information.
As another example, DPF policies (also referred to herein as
“records”) can be separately stored in reserved zones under
the control of participating TL.Ds. For a domain of pattern
domain.tld, the domain policy would be stored as a TXT
record for domain._policy.tld. For the example domain of
www.acmebank.secure, the DPF record would thus be stored
under www.acmebank._policy.secure. The wuse of
the “_policy” second level domain (or other appropriate
domain) allows for the deployment of DPF without ICANN’s
permission. It also forces TLD registries to use alternate DNS
secondaries to publish the _policy zone. TLD registries can
also publish a blank policy using only the DPFv entry. This
will provide maximum compatibility and allow for DPF
records to be published by the incumbent TLDs.

A DPF aware client, such as browser application 104,
examines the domains it receives as input (e.g., at 302 in
process 300) and looks up the TLD in its table. If the TLD is
present in the table, it makes two parallel DNS requests, one
for the host (www.acmebank.secure) and one for the policy
(www.acmebank._policy.secure). DPF TXT records are
cached throughout the DNS system in parallel to their asso-
ciated host records.

Example Syntax

The following is one example of a syntax for properly
formatted DPF records. The example syntax is human read-
able and can be modified or adapted as applicable. A DPF
record contains a list of name value pairs bonded by the
ASClII=sign. The pairs are separated by semi-colons with an
optional trailing whitespace. As an example:

(1) namel=valuel ; name2=value2; name3=value3;

In example (1), an optional space is present between the
second and third pairs, and the semi-colon is present behind
the final pair.

40

6

The DPF record begins with a version field:

(2) DPFv=1

The other name value pairs can be in any order, and any
tokenizing is insensitive to the order of values.

The characters in the name fields and the separating char-
acters are encoded as 7-bit ASCII. Except for the organization
identification field, all of the characters in the value field are
also encoded as 7-bit ASCII. Interpretation of all fields is case
insensitive, but case sensitivity can be preserved (e.g., for
characters in free text fields) in situations where the value is
displayed to a user. Names may be of length of up to eight
consecutive alphanumeric characters. Values can be of the
following four types:

Booleans: Encoded as a 1 for TRUE and 0 for FALSE. No
other values are valid in a Boolean.

Integers: A 32-bit unsigned integer value between 0 and
232! expressed in BASE10 using ASCII Arabic numerals.

BASE64 Encoded

Free Text Fields: Free text delimited by ASCII double
quote characters. A free text field can contain upper-case
alphabetical, lower-case alphabetical, and numeric charac-
ters. Some special characters are allowed, such as space and
underscore.

DPF Entries

A name-value pair for which the value is of either the
Boolean or Integer type is also referred to herein as a “DPF
entry.” DPF entries correspond to a single security action that
can be taken by a DPF client. Boolean TRUE values are more
secure than FALSE values. Integer entries increase in value as
the expected security benefit increases. In situations where
future intermediate values may be necessary, values can be
reserved for future use.

A set of DPF entries published by a domain is also referred
to herein as a “DPF policy.” DPF versions are iterative, and
the meanings of entry names assigned in previous versions
are not modified by subsequent versions.

Entries can exist for many types of protocols (e.g., HT'TP,
SMTP), and such entries can be mixed together in shared
policies. Clients are configured to ignore any entries that they
do not understand, and continue to implement the entries they
do understand. The following are tables of example DPF
entries.

TABLE 1

Example Network and Identity Entries:

Entry

Name

Value
Type

Description Examples

DPFv
DNSSEC

Integer

Integer

DPFv=1: DPF version 1.

DNSSEC=0: Zone not signed, allow for
DPF updates using unsigned records.
DNSSEC=1: Zone is signed. Upon
failure of DNSSEC verification, retry

with built in resolver. Allow for

DPF version.

Level of DNSSEC

verification required to
connect to a host in this
domain. This value is
typically in use as a base entry
included in a DPF client. insecure DPF and allow connection to
proceed.

DNSSEC=2: Zone is signed, attempt to
re-request. Do not allow for insecure
DPF, allow for connection to proceed.
DNSSEC=3: Zone is signed, attempt to
re-request. Do not allow for insecure
DPF, do not allow for connection after
DNSSEC failure.

7

US 9,083,727 B1

TABLE 1-continued

Example Network and Identity Entries:

Entry
Name

Value

Type Description

Examples

ORG

ORGV

Text A text field containing the
verified identity of the domain
owner. Supports 118N and
alternate character sets.
Integer The level of verification
performed by the registry on
the organization’s identity.
Higher values indicate a
greater level of verification.
This value is surfaced by the
DPF client to the end-user via

a UX mechanism.

ORG="ACME Bank Inc.”

ORGV=0: No verification performed.
Self-identified.

ORGV=2: Personal identification of an
individual.

ORGV=5: Strong enterprise verification,
equal to or better than Extended
Validation Certificates.

TABLE 2

Example Email Related Entries:

Entry
Name

Value

Type Description

Examples

STLS

STLSv

NOEURI

ESIG

DKIM

Integer Type of TLS protection
provided at the mail

exchanger.

STLS=0: No TLS required.
STLS=1: STARTTLS supported on
normal SMTP Port.

STLS=2: “Wrapped” SMTPS available
on port 587.

Integer Minimum required TLS
version.
Are valid URIs allowed in

emails from this domain?

Boolean

STLSv=12: TLS 1.2 minimum.

NOEURI=0: URIs are allowed.
NOEURI=1: URIs are not allowed,

reject messages containing URIs.

Text Expected email signature

algorithm for messages

ESIG=""": No signatures expected.
ESIG=“SMIME3"”: Expect mail signed

received from this domain. with SMIME v3 (RFC 2663).
ESIG=“OPGP”: Expect mail signed with
OpenPGP (RFC 4880).

Is DKIM enabled for this
domain?

Boolean

DKIM=1: Require DKIM on all mail
received from this domain.

TABLE 3

Example WWW Related Entries:

Entry
Name

Value

Type Description

Examples

HTLSv

INCLD

TLSEV

Integer Minimum required TLS
version for initial HTTP
connection. 0 means no TLS
required.

Boolean Are pages in this domain
restricted from including
content from non-TLS
protected HTTP endpoints?

Is an Extended Validation
certificate required on
servers in this domain?

Integer

HTLSv=0: No TLS required, connect
using HTTP.

HTLSv=13: TLS 1.3 required. Initially
connect using HTTPS, reject all
versions of TLS less than 1.3.
INCLD=0: Normal include policy.
INCLD=1: Non-executable includes
allowed over HTTP, such as images.
INCLD=2: All includes must be served
over HTTPS.

INCLD=3: All includes must be served
from this TLD.

INCLD=4: All includes must be served
from this exact domain.

TLSEV=0: No requirement for EV
certificate.

TLSEV=1: EV cettificate or DNSSEC
DANE published key.

TLSEV=2: EV cettificate always
required.

US 9,083,727 B1

9
TABLE 3-continued

10

Example WWW Related Entries:

Entry Value
Name Type Description Examples
3CKIES Boolean Are third party cookies 3CKIES=0: Normal third-party cookie

allowed to be set by sites
running on this domain?

policy.

cookies.
NOPLGINS Text A text string containing
plugins that are not allowed
to run on this domain.

this site.

3CKIES=1: Do not allow third-party

NOPLGINS=*": Normal plugin policy.
NOPLGINS=“FLASH;SILVERLIGHT;
JAVA”: No Flash, Silverlight or Java on

NOPLGINS=“ALL”: No browser

plugins allowed.

Additional examples of content-oriented DPF entries
include ones permitting or disallowing the use of iframes,
JavaScript, and/or cross-domain includes in web pages ren-
dered by browser 104, and requiring email messages to be
rendered in plaintext only by mail client 106.

Base and Resultant Policies

As explained above, in some embodiments DPF policies
are delivered via DNS. In situations where the DPF is inten-
tionally blocked by an attacker, the DPF record is modified,
and/or where there is an inadvertent failure of DNSSEC,
end-users are still able to connect securely to the requested
domain through the use of default policy 210. Each domain
registry participating in the DPF can publish, out of band, the
minimal requirements of their TLD. One example of a default
policy 210 is as follows:

(3) DPFv=1; HTLS=12; DNSSEC=2; STLS=1

If browser 104 is not able to receive or validate a DPF
record, the browser falls back on the default policy 210
accordingly. If the browser does receive a DPF record (e.g.,
via a DNS request to www.acmebank._policy.secure), in
some embodiments it calculates a resultant policy. One way to
determine a resultant policy is through the use of monotoni-
cally increasing values in order of security; the larger of the
two values is used. As one example:

(4) Base Policy: DPFv=1; HTLS=12; DNSSEC=2;
STLS=1;

(5) Received Policy: DPFv=2; HTLS=13; STLS=0;

(6) Resultant Policy: DPFv=2; HTLS=13; DNSSEC=2;
STLS=1;

In some embodiments, resultant policies are cached in
database policy database 212.

TLD Redirection

HTTP Strict Transport Security (HSTS) can be used by
websites to signal to user-agents their desire to only be
accessed using HTTPS. In some embodiments, HSTS is
extended to perform an additional function: to allow for per-
manent redirects from one TLD (e.g., “.com”) to another
(e.g., “.secure”™).

FIG. 6 illustrates an embodiment of a process for top level
domain redirection. In some embodiments the process shown
in FIG. 6 is performed by browser 104. The process begins at
602 when a domain is received as input. As one example,
Alicetypes “http://www.acmebank.com” into her address bar
and the domain is received as input by browser 104 at 602.

At 604, the browser connects to www.acmebank.com
using plaintext HTTP. The response from www.acme-
bank.com contains an instant 301 Redirect to https://www.ac-
mebank.com, to which the browser connects at 606. The
response from https:/www.acmebank.com contains a 301
Redirect to https://www.acmebank.secure as well as the fol-
lowing HTTP header:

20

25

30

35

40

45

50

55

60

65

(7) Strict-Transport-Security:
includeSubDomains; newTLD=secure;

At 608, the browser connects to www.acmebank.secure,
and, at 610 caches the redirect in a local HSTS database. The
next time Alice types “www.acmebank.com” into her address
bar, browser 104 will automatically rewrite it as https://ww-
w.acmebank.secure and connect directly.

FIG. 7 illustrates an embodiment of a process for determin-
ing whether connection information is consistent with a
policy. In some embodiments process 700 is performed by
browser 104.

Process 700 begins at 702 when a domain is received as
input (e.g., “www.acmebank.com”). At 704 a determination
is made as to whether or not the TLD (e.g., “.com”) is in the
browser’s list of higher trust TLDs. Suppose that “.com” is
not. At 706, a determination is made as to whether the domain
is in the browser’s HSTS cache. If not, at 708, an HTTP
request is performed using the received domain. A determi-
nation (710) is made as to whether the response includes a
redirect/HSTS. If it does not, traditional browser behavior is
resumed (712). If the response does include a redirect/HSTS,
the domain is added to the HSTS cache (714). If the domain
is already in the HSTS cache, the received domain is rewritten
at 716 (e.g., as “www.acmebank.secure™).

At 718, a DNS request is performed for a DPF policy. As
explained above, one way the request can be performed is by
making a request for the TXT record stored at www.acme-
bank._policy.secure. At 720, a determination is made as to
whether a DPF record is received. If a DPF record is not
received, a determination is made (722) as to whether the
domain policy is available locally (e.g., in policy database
212 or as a default policy 210). If the policy is locally avail-
able, or if a DPF record is received but is not properly signed
(724), the default policy is used to set a TLS context (726). In
some embodiments, if the DPF record is received but not
properly signed, browser 104 is configured to perform a local
resolve through the root zone.

If a DPF record is received, and is properly signed, a
resultant policy is calculated at 728. Finally, at 730, a con-
nection is established using the DPF policy.

Using Domain Policies in Email Delivery

FIG. 8 illustrates an example of an environment in which
domain policies are used in email delivery. In addition to
banking with ACME Bank (via site 128), Alice also uses
client 102 to access a web-based email service hosted by
webmail system 802. Webmail system 802 comprises one or
more commodity servers. Specifically, a webmail application
804 running on system 802 provides an interface (e.g., acces-
sible via Alice’s browser 104 at www.webmail.com) through
which Alice can send and receive email messages. System

max-age=15768000;

US 9,083,727 B1

11

802 also includes a spam processing engine 806. Similar to
browser 104, spam processing engine 806 includes a policy
engine 808, one or more default policies 810, and a policy
database 812, and has a list of higher trust TLDs. As will be
described in more detail below, when system 802 receives an
email message (e.g., addressed to Alice), the system exam-
ines the TLD of the sender of the message. If the TLD is
included in the list, policy engine 808 determines an appro-
priate policy to be applied and enforces the policy with
respect to acceptance (and/or delivery) of the message. In
various embodiments, server 818 also includes a policy
engine 808 and uses it in conjunction with sending messages
(i.e., determining whether the recipient’s TLD is included in
a list, obtaining a policy via a DNS lookup, and applying the
policy, such as only sending messages to servers that support
TLS).

In some embodiments, each of components 208-212 is
included within the spam processing engine by the vendor of
the engine. In other embodiments, elements such as policy
engine 808 are provided by one or more third parties (e.g., as
a plugin or extension). Whenever system 802 is described as
performing a task, either a single component or a subset of
components or all components of system 802 may cooperate
to perform the task. Similarly, whenever a component of
system 802 is described as performing a task, a subcompo-
nent may perform the task and/or the component may per-
form the task in conjunction with other components.

FIG. 9 illustrates an embodiment of a process for determin-
ing whether delivery of an email is consistent with a policy. In
some embodiments process 900 is performed by system 802.
A more detailed process for determining whether delivery of
anemail is consistent with a policy is presented in FIG. 10 and
described in more detail below.

Process 900 begins at 902 when an email is received. As
one example, suppose ACME Bank would legitimately like
Alice to log into her bank account (e.g., to review a change in
its privacy policies or to obtain tax documents). An adminis-
trator at ACME Bank (or an automated process) addresses an
email to alice@webmail.com and causes the message to be
sent. The message 816 is received by system 802 at 902.

At 904, a determination is made that the domain of the
sender is associated with a particular TLD. As one example, a
determination is made that “mx.acmebank.secure” (812) is
associated with the TLD, “.secure,” which appears in the list
of higher trust TL.Ds stored by system 802.

At 906, a policy is obtained. As one example, the policy is
obtained from a nameserver, such as nameserver 814. In
particular, system 802 sends a DNS request for acme-
bank._policy.secure and receives back a TX T record. A single
record for acmebank._policy.secure can be used to specify
policies applicable to both connections made to website 128
and the treatment of email messages sent by server 818. As
explained above, clients (e.g., browser 104 and, in this
example, system 102) can be configured to ignore any entries
in the policy that they do not understand, and implement the
entries that they do understand. Thus, if the acmebank._poli-
cy.secure policy includes a DKIM entry, browser 104 can
ignore it. Similarly, if the acmebank._policy.secure policy
includes an entry applicable to FTP (e.g., requiring the use of
SSL for FTP), system 802 can ignore that entry. As with
browser 104, system 802 can also make use of'a default policy
810, policy database 812, and the calculation of resultant
policies (described above) in obtaining policies at 906.

At 908, a determination is made as to whether delivery of
the message is consistent with the policy obtained at 906. As
one example, the policy obtained at 906 can require that sever
818 make use of STARTTLS and that version 1.3 of TLS be

10

15

20

25

30

35

40

45

50

55

60

65

12

used. If server 818 does not comply with the policy, the reason
may be that server 818 is misconfigured. Server 818 may also
not comply with the policy because, instead of being owned
and maintained by ACME Bank, the server may be owned/
operated by an imposter.

Finally, at 910, the message is selectively delivered based
on the determination made at 908. As one example, if the
transmission of the message complies with the policy require-
ments (e.g., regarding STARTTLS or DKIM), the message is
delivered to Alice’s inbox at 910. As explained above, some
of'the policy entries can be content-specific. So, for example,
apolicy entry could require that email messages be delivered
in plaintext or that messages not contain any URLs. A policy
entry could also require that any messages sent by server 818
be signed, encrypted, etc. If the policy is not satisfied, the
message is not delivered to Alice. In some embodiments, the
message is silently removed. A warning message or other
notification can also be delivered to Alice in lieu of the mes-
sage, as applicable, informing Alice that the message did not
comply with the policy and letting her know the reason. As
will be described in more detail below, additional processing
can also be performed on the message prior to delivery, such
as traditional antispam analysis.

FIG. 10 illustrates an embodiment of a process for deter-
mining whether delivery of an email is consistent with a
policy. In some embodiments process 1000 is performed by
system 802.

Process 1000 begins at 1002 when an email message is
received (e.g., a message to alice@webmail.com sent by
server 818). At 1004 a determination is made as to whether or
not the TLD (e.g., “.secure”) is in the system’s list of higher
trust TLDs. If not, the message is delivered at 1006 (or tradi-
tional processing is performed prior to possible delivery).

Since “.secure” is in the list of higher trust TLDs, at 1008
apolicy is requested (e.g., a DNS request for acmebank._poli-
cy.secure is sent by system 102). At 1010, the response is
examined to see if it is DNSSEC signed. Ifthe response is not
appropriately signed, the local default policy 810 is used
(1012). Other actions can also be taken in response to deter-
mining that the response is not DNSSEC signed, such as by
system 102 performing a local resolve through the root zone.
It the response is appropriately signed (1014), the policy will
be used (or, a resultant policy is computed using the received
policy and the default policy).

At 1016, the message is evaluated using both traditional
antispam analysis, and also for compliance with the selected
DPF policy. Policy engine 808 and any additional analyzers/
engines can run in parallel or in series in determining whether
the message “passes” all requirements for delivery (1018). If
the message satisfies all requirements for delivery (e.g., its
delivery does not violate the policy) the message is delivered
at 1020. Otherwise (1022), the message is rejected.

In some embodiments, an indication that the message was
sent by a domain associated with a higher trust TLD, that the
message complied with a DPF record, etc. is presented to the
user when the user accesses the message. For example, the
“secure” portion of the sender’s email address (e.g.,
admin@acmebank.secure) can be rendered by webmail
application 804 in bold. As another example, the legal name
of'the sender (“ACME Bank Inc.”) can be substituted for the
domain portion of the email address when rendered by web-
mail application 804 to Alice. As yet another example, a lock
symbol can be presented to the user in an inbox view; mes-
sages which have been verified can be bolded in an inbox
view; etc.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the

US 9,083,727 B1

13

invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system, comprising:

a set of one or more interfaces configured to:

receive input including a second level domain, wherein
the second level domain is associated with a particular
top level domain; and

obtain a policy associated with the top level domain,
wherein the policy includes at least one requirement
regarding Domain Name System Security Extensions
(DNSSEC);

a processor configured to:

determine whether connection information is consistent
with the policy, wherein the at least one requirement
includes a requirement that a Domain Name System
(DNS) response associated with the connection be
DNSSEC signed and wherein the system is config-
ured to send a second request in response to a deter-
mination that the response is not signed; and

display content based on the determination; and

a memory coupled to the processor and configured to pro-

vide the processor with instructions.

2. The system of claim 1 wherein the policy comprises a
default security policy.

3. The system of claim 1 wherein determining whether the
connection information is consistent with the policy is per-
formed by a browser application executing on the system.

4. The system of claim 1 wherein the policy includes a
requirement regarding a version of Transport Layer Security
(TLS).

5. The system of claim 1 wherein the policy includes a
requirement regarding an Extended Validation (EV) Certifi-
cate.

6. The system of claim 1 wherein the policy includes a
requirement regarding the presence of an iframe.

7. The system of claim 1 wherein the policy includes a
requirement regarding the presence of a cross-domain
include.

8. The system of claim 1 wherein the displayed content
includes at least one indicator rendered in a browser address
bar.

9. The system of claim 8 wherein the indicator comprises a
corporate name.

10. The system of claim 8 wherein the indicator comprises
the top level domain being rendered in a manner different
from the second level domain.

11. The system of claim 1 wherein obtaining the policy
includes determining a resultant policy from abase policy and
a received policy.

12. The system of claim 1 wherein the content displayed
comprises an indication that the connection is secure.

10

15

20

25

30

35

40

45

50

14

13. The system of claim 1 wherein the content displayed
comprises an error message in the event it is determined that
the connection information is not consistent with the policy.

14. The system of claim 1 wherein the processor is further
configured to rewrite the input at least in part by substituting
a second top level domain for a first top level domain.

15. The system of claim 1 wherein the interface is config-
ured to obtain the policy from an external source.

16. The system of claim 15 wherein obtaining the policy
includes transforming the received input into a transformed
domain.

17. A method, comprising:

receiving input including a second level domain, wherein

the second level domain is associated with a particular
top level domain;
obtaining a policy associated with the top level domain,
wherein the policy includes at least one requirement
regarding Domain Name System Security Extensions
(DNSSEC);

determining whether connection information is consistent
with the policy, wherein the at least one requirement
includes a requirement that a Domain Name System
(DNS) response associated with the connection be DNS-
SEC signed and wherein the system is configured to
send a second request in response to a determination that
the response is not signed; and

displaying content based on the determination.

18. The method of claim 17 wherein determining whether
the connection information is consistent with the policy is
performed by a browser application.

19. The method of claim 17 wherein the displayed content
includes at least one indicator rendered in a browser address
bar.

20. A computer program product embodied in a tangible
non-transitory computer readable storage medium and com-
prising computer instructions for:

receiving input including a second level domain, wherein

the second level domain is associated with a particular
top level domain;
obtaining a policy associated with the top level domain,
wherein the policy includes at least one requirement
regarding Domain Name System Security Extensions
(DNSSEC);

determining whether connection information is consistent
with the policy, wherein the at least one requirement
includes a requirement that a Domain Name System
(DNS) response associated with the connection be DNS-
SEC signed and wherein the system is configured to
send a second request in response to a determination that
the response is not signed; and

displaying content based on the determination.

#* #* #* #* #*

